Stabilization of atmospheric carbon dioxide via zero emissions—An alternative way to a stable global environment. Part 1: Examination of the traditional stabilization concept
نویسندگان
چکیده
The concept of "stabilization" of atmospheric CO(2) concentration is re-examined in connection with climate-change mitigation strategies. A new "zero-emissions stabilization (Z-stabilization)" is proposed, where CO(2) emissions are reduced to zero at some time and thereafter the concentration is decreased by natural removal processes, eventually reaching an equilibrated stable state. Simplified climate experiments show that, under Z-stabilization, considerably larger emissions are permissible in the near future compared with traditional stabilization, with the same constraint on temperature rise. Over longer time scales, the concentration and temperature decrease close to their equilibrium values, much lower than those under traditional stabilization. The smaller temperature rise at final state is essential to avoid longer-term risk of sea level rise, a significant concern under traditional stabilization. Because of these advantages a Z-stabilization pathway can be a candidate of practical mitigation strategies as treated in Part 2.
منابع مشابه
Stabilization of atmospheric carbon dioxide via zero emissions—An alternative way to a stable global environment. Part 2: A practical zero-emissions scenario
Following Part 1, a comparison of CO(2)-emissions pathways between "zero-emissions stabilization (Z-stabilization)" and traditional stabilization is made under more realistic conditions that take into account the radiative forcings of other greenhouse gases and aerosols with the constraint that the temperature rise must not exceed 2 °C above the preindustrial level. It is shown that the finding...
متن کاملOcean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean
[1] We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO2 emission, stabilization of atmospheric CO2 content, and stabilization of atmospheric CO2 achieved in total or in part by injection of CO2 to the deep ocean interior. Our goal is to provide first-order results from various CO2 pathways, allowing correspondence with studies of marin...
متن کاملSimulation of methanol synthesis by hydrogenation of carbon dioxide recovered from combustion gases of Fluid Catalytic Cracking Unit of Abadan Refinery
Refineries produce about four percent of the global carbon dioxide emissions, close to one billion tons per year. Globally, the refining sector is the third largest producer of carbon dioxide after the electricity generation and cement industry.This greenhouse gases is a major cause of global warming and climate change and is a serious threat to human health and the environment. One way to redu...
متن کاملUncertainty in Greenhouse Gas Emissions and Costs of Atmospheric Stabilization
We explore the uncertainty in projections of emissions, and costs of atmospheric stabilization applying the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the global economy. Monte Carlo simulation with Latin Hypercube Sampling is applied to draw 400 samples from probability distributions for 100 parameters in the EPPA model, including labor...
متن کاملOcean-atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales
[1] A theory for the ocean-atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales is presented. The partial pressure of atmospheric CO2 (PCO2) is related to the external CO2 input (DSC) at air-sea equilibrium by: PCO2 = 280 ppm exp(DSC/[IA + IO/R]), where IA, IO, and R are the pre-industrial values of the atmospheric CO2 inventory, the oceanic dissolved inorganic carbo...
متن کامل